The Quest for the Origin of the Proton's Sea SeaQuest and SeaTEQ Paul E Reimer Physics Division Argonne National Laboratory 5 November 2015 ### First picture of the proton: Valence quarks - Constituent Quark/Bag Model motivated valence approach - Use valence-like (primordial) quark distributions at some very low scale, Q², perhaps a few hundred MeV - Radiatively generate sea and glue. Gluck, Godbole, Reya, ZPC 41 667 (1989) ### **Second Picture: Dynamics** - Constituent Quark/Bag Model motivated valence approach - Use valence-like (primordial) quark distributions at some very low scale, Q², perhaps a few hundred MeV - Radiatively generate sea and glue. Gluck, Godbole, Reya, ZPC 41 667 (1989) Paul E Reimer, ### Sea is a fundamental part of the proton ### Parton distributions for high energy collisions M. Glück, E. Reya, A. Vogt Institut für Physik, Universität Dortmund, Postfach 500500, W-4600 Dortmund 50, Federal Republic of Germany Received 10 June 1991 Abstract. Recent data from deep inelastic scattering experiments at $x > 10^{-2}$ are used to fix the parton distributions down to $x = 10^{-4}$ and $Q^2 = 0.3 \ GeV^2$. The predicted extrapolations are uniquely determined by the requirement of a *valence*-like structure of *all* parton distributions at some low resolution scale Gluck, Reya, Vogt, ZPC 53, 127 (1992) ### Light Antiquark Flavor Asymmetry: Brief History Naïve Assumption: $$\bar{d}(x) = \bar{u}(x)$$ NMC (Gottfried Sum Rule) $$\int_0^1 \left[\bar{d}(x) - \bar{u}(x) \right] dx \neq 0$$ ### Light Antiquark Flavor Asymmetry: Brief History Naïve Assumption: $$\bar{d}(x) = \bar{u}(x)$$ NMC (Gottfried Sum Rule) $$\int_0^1 \left[\bar{d}(x) - \bar{u}(x) \right] dx \neq 0$$ NA51 (Drell-Yan) $$\bar{d} > \bar{u}$$ at $x = 0.18$ E866/NuSea (Drell-Yan) $$\bar{d}(x)/\bar{u}(x)$$ for $0.015 \le x \le 0.35$ Knowledge of sea dist. are data driven Non perturbative QCD models can explain excess d-bar quarks, but not return to symmetry or deficit of d-bar quarks ### Proton Structure: By What Process Is the Sea Created? There is a gluon splitting component which is symmetric $$\bar{d}(x) = \bar{d}_{pQCD}(x) + \bar{d}_{\pi}(x) \qquad 1$$ $$\bar{u}(x) = \bar{u}_{pQCD}(x) + \bar{u}_{\pi}(x) \qquad 0.8$$ $$\bar{q}_{pQCD}(x) = \bar{d}_{pQCD}(x) \qquad = \bar{u}_{pQCD}(x) \qquad = \bar{u}_{pQCD}(x) \qquad = 0.6$$ $$\bar{d}(x) - \bar{u}(x) \qquad 0.4$$ - Symmetric sea via pair production from 0.2 gluons subtracts away - No Gluon contribution at 1st order in α_{s} $_{0}$ - Nonperturbative models are motivated by the observed difference X Paul E Reimer, ### Proton Structure: By What Process Is the Sea Created? Lattice weighs in!! Paul E Reimer, 21 June 2016 ### The European Muon Collaboration (EMC) Effect ### Are the parton distributions in nucleons within a nucleus the same as free nucleons? - Is there a difference between hitting a proton in a nucleus and a free proton? - Hard scattering makes an implicit assumption that the interaction is energetic enough so that the binding of quarks in a proton is small so surely, the binding of protons in the nucleus is also small? - Do the quarks change configuration? ### The European Muon Collaboration (EMC) Effect Are the parton distributions in nucleons within a nucleus the same as free nucleons? - Experimentally—No - EMC measured the DIS F₂ ratio for Iron to Deuterium $$F_2(x) = \sum_{q \in \{u, d...\}} e_q^2 \left[\frac{q(x)}{q(x)} + \bar{q}(x) \right]$$ #### Why? - Shadowing - Nuclear binding effects Paul E Reimer, ### The European Muon Collaboration (EMC) Effect Are the parton distributions in nucleons within a nucleus the same as free nucleons? - Experimentally—No - EMC measured the DIS F₂ ratio for Iron to Deuterium $$F_2(x) = \sum_{q \in \{u, d...\}} e_q^2 \left[\frac{q(x)}{q(x)} + \overline{q}(x) \right]$$ 0.85 #### Why? - Shadowing - Nuclear binding effects Do quarks and antiquarks experience the same modifications? ### Structure of nucleonic matter: How do DIS and Drell-Yan data compare? - Shadowing present in Drell-Yan - Antishadowing not seen in Drell-YanValence only effect # Structure of nucleonic matter: Where are the nuclear pions? The binding of nucleons in a nucleus is expected to be governed by the exchange of virtual "Nuclear" mesons. 15 Paul E Reimer, 21 June 2016 # Structure of nucleonic matter: Where are the nuclear pions? - The binding of nucleons in a nucleus is expected to be governed by the exchange of virtual "Nuclear" mesons. - No antiquark enhancement seen in Drell-Yan (Fermilab E772) data. Paul E Reimer, 21 June 2016 1 # Structure of nucleonic matter: Where are the nuclear pions? - The binding of nucleons in a nucleus is expected to be governed by the exchange of virtual "Nuclear" mesons. - No antiquark enhancement seen in Drell-Yan (Fermilab E772) data. - Contemporary models predict large effects to antiquark distributions as x increases. - Models must explain both DIS-EMC effect and Drell-Yan Paul E Reimer, # **Exploring the Sea** ### How can we measure the sea distributions? Need a process that can isolate sea contributions: SIDIS $N^{\pi^\pm} \propto \sum_{q \in \{u,d,\dots\}} \left[q(x,Q^2) D^{\pi^\pm} + \bar{q}(x,Q^2) D^{\pi^\pm} \right]$ - Low statistics - K/π identification - Knowledge of fragmentation functions (D^{π}) - HERMES, COMPASS, JLab 12 GeV - Collider W production $$A_W(y) \propto \frac{u(x_1)d(x_2) - d(x_1)\bar{u}(x_2)}{u(x_1)\bar{d}(x_2) + d(x_1)\bar{u}(x_2)}$$ - Fermilab Tevatron, CERN LHC - Drell-Yan - Rest of this talk $$\frac{d\sigma}{dx_1 dx_2} \propto \sum_{q \in \{u, d, \dots\}} e_q^2 \left[q(x_1) \bar{q}(x_2) + \bar{q}(x_1) q(x_2) \right]$$ ### **Drell-Yan Cross Section** Cross section is a convolution of beam and target parton distributions **MRST** ### **Drell-Yan Cross Section** Cross section is a convolution of beam and target parton distributions $$\frac{d^2\sigma}{dx_{\rm b}dx_{\rm t}} = \frac{4\pi\alpha^2}{x_{\rm b}x_{\rm t}s} \sum_{q \in \{u,d,s,\ldots\}}$$ u-quark dominance (2/3)² vs. (1/3)² n and $$10^{-2}$$ $x_{\rm d}$ (Fixed Target, Hadron Beam) 10 | Beam | Sensitivity | Experiment | |-------------|----------------------------------|--| | Hadron | Beam quarks
target antiquarks | Fermilab, J-PARC
RHIC (forward acpt.) | | Anti-Hadron | Beam antiquarks
Target quarks | J-PARC, GSI-FAIR
Fermilab Collider | | Meson | Beam antiquarks
Target quarks | COMPASS, J-PARC | **MRST** ### **Drell-Yan Cross Section** Cross section is a convolution of beam and 10 target parton distributions $$\frac{d^2\sigma}{dx_b dx_t} = \frac{4\pi\alpha^2}{x_b x_t s} \sum_{q \in \{u, d, s, \dots\}}$$ u-quark dominance $$(2/3)^2$$ vs. $(1/3)^2$ $$\frac{\sigma^{\mathrm{pd}}}{2\sigma^{\mathrm{pp}}} = \frac{1}{2} \left[1 + \frac{\bar{d}(x)}{\bar{u}(x)} \right]$$ | o -1 | | | | |---|--|--|--| | $0^{-2} = \frac{xu_{V}}{xd_{V}}$ | | | | | $0 = \frac{x\bar{u}}{0} \times \bar{d}$ 0 0.2 0.4 0.6 0.8 1 | | | | | X _{target} x X _{beam} | | | | | $q_{\mathrm{b}}(x_{\mathrm{t}})q_{\mathrm{b}}(x_{\mathrm{b}}) + q_{\mathrm{b}}(x_{\mathrm{b}})q_{\mathrm{t}}(x_{\mathrm{t}})$ | | | | | Acceptance limited | | | | (Fixed Target, Hadron Beam) | Beam | Sensitivity | Experiment | |--------|-------------------------------|--| | Hadron | Beam quarks target antiquarks | Fermilab, J-PARC
RHIC (forward acpt.) | ### Drell-Yan Cross Section—Next-to-leading order α_s These diagrams are responsible for approximately 50% of the measured cross section ### Data From FY2014—target-dump separation Entire beam interacts upstream of SeaQuest Spectrometer Pointing resolution very poor along beam axis ### Data From FY2014 27 #### Data From FY2014 28 #### Data From FY2014 ### **SeaQuest Cross Section Ratio** ### **SeaQuest Cross Section Ratio** ### SeaQuest LO dbar/ubar extraction Paul E Reimer, ### **SeaQuest Cross Section Ratio** Paul E Reimer, SeaQuest 4 September 2016 ### SeaQuest Seaquark EMC Effect - Data Presented by Bryan Dannowitz April 2015 APS - No antiquark enhancement apparent. - 10% of anticipated statistical precision - Increased detector acceptance at large-x to come. # Leading order Single Spin Drell-Yan Cross Section $\begin{array}{ll} A_{\mathrm{U}}^{\cos2\phi} & \text{Boer-Mulders of target hadron} \\ A_{\mathrm{T}}^{\sin\phi_S} & \text{Sivers for beam nucleon} \\ A_{\mathrm{T}}^{\sin\left(2\phi+\phi_S\right)} & \text{Boer-Mulders of target and h}_{1}^{\perp} \text{ and pretzelosity of beam} \\ A_{\mathrm{T}}^{\sin\left(2\phi-\phi_S\right)} & \text{Boer-Mulders of target and h}_{1} \text{ and transversity of beam} \end{array}$ (with polarized beam and unpolarized target) # Sivers Function and the Spin Crisis Correlation between unpolarized quarks and a nucleon's transverse polarization $$f_{1T}^{\perp} = \bigcirc$$ Non-zero Sivers distribution ⇒ non-zero quark orbital momentum $$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L$$ $$\Delta \Sigma = \Delta u + \Delta d + \Delta s$$ $$\frac{1}{2}\Delta\Sigma \approx 25\%$$ $\% \Delta \Sigma \approx 25\%$ $\Delta G \approx 0-15\%^{1}$ L ≈ unmeasured # Pion Cloud and OAM • Consider a nucleonic pion cloud $|p\rangle = |p_0\rangle + |N\pi\rangle + |\Delta\pi\rangle + ...$ Pions J^p=0⁻ Negative Parity Need L=1 to get proton's J^p=½⁺ Sea quarks should carry orbital angular momentum. # How measure quark OAM? - GPD: Generalized Parton Distribution - TMD Transverse Momentum Distribution $$A_N = \frac{N^{\uparrow} - N^{\downarrow}}{N^{\uparrow} + N^{\downarrow}} \stackrel{?}{=} 0$$ $$A_N^{DY} \propto \frac{u(x_b) \cdot f_{1T}^{\perp,\bar{u}}(x_t)}{u(x_b) \cdot \bar{u}(x_t)}$$ # Lattice QCD: $$\Delta\Sigma_a \approx 25\%$$ $$2 L_q \approx 46\% (0\% (valence) + 46\% (sea))$$ $$2 J_{\sigma} \approx 25\%$$ K.-F. Liu et al arXiv:1203.6388 # Projected Statistical Precision with a Polarized Target at SeaQuest # Polarized target - Installation in Summer 2016 - Supported with Los Alamos LDRD funds Statistics precision shown for two calendar years of running : Protons on target = $$2.7 \times 10^{18}$$ $\int = 7.2 \times 10^{42} / \text{cm}^2$ # "Naïve" T-odd observables Naïve T-odd effect $(F_{1T}^{\perp q})$ must arise from interference between spin-flip and non-flip amplitudes w/different phases can interfere with - soft gluons "gauge links" required for color gauge invariance - soft gluon re-interactions are final (or initial) state interactions ... and may be process dependent! $$\left.f_{1T}^{\perp}\right|_{\mathrm{SIDIS}} = -\left.f_{1T}^{\perp}\right|_{\mathrm{DY}}$$ # Polarized Beam Drell-Yan at Fermilab #### The Plan: Use fully understood SeaQuest Spectrometer Recycler Ring (above MI) Add polarized beam. Polarized Source-Spin Rotator Polarimeter\ _RFQ's **Polarimeters** MI Snake Sources RR Snake Switching Magnet 8.9 GeV/c 400 MeV Linac **Booster** Fast Uncalibrated and CNI Polarimeters with H2 Jet Target -Pulsed Quads ? Partial Snake 120 GeV/c Main Injector Fast Polarimeter Beamline CNI Polarimeter # Polarized Beam Drell-Yan at Fermilab #### The Plan: Use fully understood SeaQuest Spectrometer Recycler Ring (above MI) Add polarized beam. Polarized Source-Spin Rotator Polarimeter' -RFQ's **Polarimeters** MI Snake Sources RR Snake Switching Magnet 8.9 GeV/c 400 MeV Linac **Booster** Fast Uncalibrated and CNI Polarimeters with H2 Jet Target -Pulsed Quads ? Partial Snake 120 GeV/c Main Injector Cost Est.: \$6M +\$4M Contingency & Management = \$10M (in 2013) Fast Polarimeter Beamline CNI Polarimeter # Expected Precision from E-1027 at Fermilab - Same as SeaQuest - luminosity: $L_{av} = 2 \times 10^{35}$ (10% of available beam time: $I_{av} = 15$ nA) - 3.2 X 10^{18} total protons for 5 x 10^5 min: (= 2 yrs at 50% efficiency) with $P_b = 70\%$ Can measure not only sign, but also the size & maybe shape of the Sivers function! # Search for Dark Photons at SeaQuest Classic Beam Dump Experiment Minimal impact on Drell-Yan program $$\mathcal{L} \propto -\frac{1}{4} \mathcal{F}_{\mu\nu}^{\text{SM}} \mathcal{F}_{\text{SM}}^{\mu\nu} - \frac{1}{4} \mathcal{F}_{\mu\nu}^{\text{hidden}} \mathcal{F}_{\text{hidden}}^{\mu\nu} \mathcal{F}_{\text{hidden}}^{\text{100}} \mathcal{F}_{\text{hidden}}^{\text{100}} \mathcal{F}_{\text{hidden}}^{\text{100}} + \frac{1}{4} \mathcal{F}_{\text{hidden}}^{\text{SM}} \mathcal{F}_{\text{hidden}}^{\mu\nu} + \frac{1}{4} \mathcal{F}_{\text{hidden}}^{\text{Ahidden}} \mathcal{F}_{\text{hidden}}^{\mu} \mathcal{F}_{\text{hidden}}^{\mu\nu}$$ # Fermilab Polarized Drell-Yan Collaborating Institutes # **Polarized Target:** Argonne National Laboratory Fermi National Accelerator Laboratory Institute of Physics, Academia Sinica KFK Ling-Tung University Los Alamos National Laboratory University of Maryland University of Michigan University of New Hampshire National Kaohsiung Normal University RIKFN Rutgers University Thomas Jefferson National Accelerator Facility Tokyo Tech University of Virginia Andi Klein and Xiaodong Jiang Co-Spokespersons #### **Polarized Beam:** Abilene Christian University Argonne National Laboratory University of Basque Country University of Colorado Fermi National Accelerator Laboratory University of Illinois **KEK** Los Alamos National Laboratory University of Maryland University of Michigan RIKEN Rutgers Tokyo Tech Yamagata University Wolfgang Lorenzon and Paul E Reimer Co-Spokespersons # Fermilab E906/SeaQuest Collaboration ### **Abilene Christian University** Ryan Castillo, Michael Daugherity, Donald Isenhower, Noah Kitts, Lacey Medlock, Noah Shutty, Rusty Towell, Shon Watson, Ziao Jai Xi #### Academia Sinica Wen-Chen Chang, Shiu Shiuan-Hao ### **Argonne National Laboratory** John Arrington, Don Geesaman*, Kawtar Hafidi, Roy Holt, Harold Jackson, Michelle Mesquita de Medeiros, Bardia Nadim, Paul E. Reimer* # University of Colorado Ed Kinney, Po-Ju Lin ### Fermi National Accelerator Laboratory Chuck Brown, Dave Christian, Gabriele Garzoglio, Su-Yin (Grass) Wang, Jin-Yuan Wu ### University of Illinois Bryan Dannowitz, Markus Diefenthaler, Bryan Kerns, Hao Li, Naomi C.R Makins, Dhyaanesh Mullagur R. Evan McClellan, Jen-Chieh Peng, Shivangi Prasad, Mae Hwee Teo, Mariusz Witek, Yanggiu Yin #### **KEK** Shin'ya Sawada ### Los Alamos National Laboratory Gerry Garvey, Xiaodong Jiang, Andreas Klein, David Kleinjan, Mike Leitch, Kun Liu, Ming Liu, Pat McGaughey # Mississippi State University Lamiaa El Fassi ### University of Maryland Betsy Beise, Andrew (Yen-Chu) Chen ### University of Michigan Christine Aidala, McKenzie Barber, Catherine Culkin, Vera Loggins, Wolfgang Lorenzon, Bryan Ramson, Richard Raymond, Josh Rubin, Matt Wood ### **National Kaohsiung Normal University** Rurngsheng Guo Yuji Goto # Rutgers, The State University of New Jersey Ron Gilman, Ron Ransome, Arun Tadepalli ### Tokyo Tech Shou Miyaska, Kei Nagai, Kenichi Nakano, Shigeki Obata, Toshi-Aki Shibata ### Yamagata University Yuya Kudo, Yoshiyuki Miyachi, Shumpei Nara *Co-Spokespersons Paul E Reimer, 21 June 2016 Subject: RE: Talk at CTEQ-POETIC meeting From: "Nadolsky, Pavel" < nadolsky@physics.smu.edu> **Date:** 11/10/16, 17:53 **To:** "reimer@anl.gov" < reimer@anl.gov> Dear Paul, your talk at CTEQ-POETIC meeting is scheduled on Friday, 11am EST, for 35+5 minutes. [It's a little shorter than I originally hoped, but the time limits are not strict, if you need a bit of extra time.] See you at the meeting next week! Best regards, Pavel Pavel Nadolsky Associate Professor Department of Physics Southern Methodist University Dallas, TX 75275, USA 203 Fondren Science Building Phone: +1 214 768-1756 Fax: +1 214 768-4095 E-mail: nadolsky@smu.edu WWW: www.physics.smu.edu/~nadolsky Google Scholar: bit.ly/nadolsky_scholar Appointments: doodle.com/pavelnadolsky Paul E Reimer, **Drell-Yan Physics Program** # Sea Quarks of the Target - dbar/ubar - Sea quark EMC effect #### Not discussed: - Quark sea absolute magnitude - Partonic Energy Loss - J/ψ Nuclear Dependence - Dark Photons? ### **Transverse Spin Physics** - Sivers and OAM of Sea Quarks - Sivers and QCD on Valence Quarks (COMPASS and SeaQuest)